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Autism spectrum disorder (ASD) is a complex neurodevelopmental condition

mainly characterized by social impairments and repetitive behaviors. Among

these core symptoms, a notable aspect of ASD is the presence of emotional

complexities, including high rates of anxiety disorders. The inherent heteroge-

neity of ASD poses a unique challenge in understanding its etiological origins,

yet the utilization of diverse animal models replicating ASD traits has

enabled researchers to dissect the intricate relationship between autism and

atypical emotional processing. In this review, we delve into the general find-

ings about the neural circuits underpinning one of the most extensively

researched and evolutionarily conserved emotional states: fear and anxiety.

Additionally, we explore how distinct ASD animal models exhibit various

anxiety phenotypes, making them a crucial tool for dissecting ASD’s multi-

faceted nature. Overall, to a proper display of fear response, it is crucial to

properly process and integrate sensorial and visceral cues to the fear-induced

stimuli. ASD individuals exhibit altered sensory processing, possibly contrib-

uting to the emergence of atypical phobias, a prevailing anxiety disorder

manifested in this population. Moreover, these individuals display distinctive

alterations in a pivotal fear and anxiety processing hub, the amygdala. By

examining the neurobiological mechanisms underlying fear and anxiety regu-

lation, we can gain insights into the factors contributing to the distinctive

emotional profile observed in individuals with ASD. Such insights hold the

potential to pave the way for more targeted interventions and therapies that

address the emotional challenges faced by individuals within the autism

spectrum.
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Autism spectrum disorder (ASD) is a heterogeneous

neurodevelopmental disorder with worldwide preva-

lence. The etiology of ASD remains intricate, involving

complex interactions between genetic and environmen-

tal factors. Inheritability studies have provided com-

pelling evidence supporting a strong heritability
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component and genetic contribution in ASD [1,2].

Recently, using whole-exome sequencing, more than

100 candidate genes were associated with ASD, with

changes ranging from single point mutations to copy

number variations [3]. Notably, most of the candidate

genes are involved in synaptic function and neuronal

development supporting the hypothesis of altered neu-

ronal communication and connectivity in ASD individ-

uals and mouse models.

According to the Diagnostic and Statistical Manual

of Mental Disorders, Fifth Edition (DSM-5), ASD

individuals present social communication impairments

and restricted, repetitive patterns of behavior, includ-

ing unusual interests and altered sensorial sensitivities

[4]. Furthermore, together with these core symptoms,

individuals often present psychiatric disorders such as

anxiety, depression, and high levels of aggression.

Recent studies demonstrate that 40–50% of the chil-

dren in the autism spectrum are diagnosed with at

least one anxiety disorder, a percentage considerably

higher compared to the general pediatric population

[5,6], and around 60% demonstrate signs of aggression

toward their caregivers [7,8]. Furthermore, poor emo-

tional regulation during school age persists until adult-

hood [9,10], emphasizing the importance of early

interventions. Some monogenic ASD animal models

also display exacerbated aggressive behaviors,

increased anxiety, and decreased ability to regulate

anxiety levels after stressful events [11–14], supporting
the idea that ASD genetic mutations and their impact

on synaptic function and neuronal connectivity might

contribute to emotional dysregulation.

In this review, to establish comparisons between

human and animal model data, we will consider emo-

tions as evolutionarily conserved states instead of the

conscious perception of feelings. We will start by defin-

ing the general features of emotional states, with the

main focus on fear and anxiety, and the neuronal cir-

cuits linked to them. Simultaneously, we will analyze

how the distinct mutations observed in ASD might

influence emotional fearful states.

Defining emotional states

The definition of emotions remains a subject of active

debate, mainly characterized by two viewpoints: the

psychological perspective, which characterizes emo-

tions as consciously perceived feelings [15,16], and the

evolutionary perspective, which conceives them as

adaptive internal states [17,18]. Within the framework

of the evolutionary perspective, emotions are inte-

grated states that encompass neurological, behavioral,

autonomic, and endocrinal responses. Darwin initially

postulated that emotions evolved in animals to

promptly respond and adapt to environmental changes

and to communicate critical social information [19,20].

Notably, both seem to be altered in individuals with

ASD, who commonly exhibit difficulties in adapting to

novelty and have preference for repetitive tasks, dis-

playing also communication and social deficits [4].

Emotional states have different dimensions such as

valence (positive vs negative), intensity (mild to

strong), persistence (acute vs prolonged), and generali-

zation. Individuals with ASD often exhibit distinct reg-

ulatory patterns in terms of perceiving and navigating

emotional states across these various dimensions, espe-

cially in terms of generalization and intensity. Atypical

processing mechanisms within the brain–body axis

may explain atypical emotional profiles in ASD, con-

tributing to the emotional regulation challenges inher-

ent in ASD. Thus, understanding the intricate

interplay between emotional processing and its under-

lying neural circuits may be crucial to unravel the

complexities of emotional experiences in the context of

ASD. Building upon this foundation, we now delve

into the neural substrates of an emotional state preva-

lently altered in ASD: fear and anxiety. By examining

the circuits governing such emotions, we aim to

explore how their dysregulation may contribute to the

emergence of anxiety disorders frequently observed

among individuals with ASD, such as phobias.

Neurobiology of fear and anxiety

Fear and anxiety are crucial for survival and one of

the most studied emotions. These highly evolutionary

conserved states can be differentiated by threat (un)

certainty: fear responses are elicited upon immediate,

discernible threats, while anxiety emerges in anticipa-

tion of potential dangers [21,22].

Using field observation and behavioral paradigms

such as Pavlovian fear conditioning where a neutral

stimulus gets associated with an aversive unconditional

stimulus [23], it was possible to understand that fear

stimuli are generally triggered by external or internal

sensorial cues, generating brain states that elicit a wide

range of responses from behavioral, to autonomic to

endocrinal. Simultaneously, the body constantly com-

municates its physiological state to the brain through

a process known as interoception, providing ongoing

updates about bodily conditions. Considering this

framework, a successful fear response relies on individ-

ual ability to process and integrate sensorial cues with

internal physiological state.

Regarding the sensorial integration of cues that trig-

ger fear, each cue is initially processed through
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different neural circuits according to its sensory

modality, flowing through the thalamus to sensory-

specific primary and associative cortices [24,25]. Subse-

quently, this sensory information converges within the

lateral amygdala, a focal hub in the orchestration of

fear responses, where emotional valence of the sensory

stimuli gets evaluated to initiate appropriate behav-

ioral and physiological responses. Connection between

the thalamus and the amygdala allows the brain to

rapidly process incoming sensory information, provid-

ing an immediate route for evaluation of potential

threats [25–29]. As such, impairments in amygdalar

circuits can lead to inadequate processing of sensory

information, with inaccurate assignment of emotional

valence to a particular stimulus. Of note, pharmaco-

logical inhibition or lesion of the amygdala leads to

increased social interaction and decreased fear

responses, demonstrating well this interplay between

fear and sociability [30,31].

Regarding the integration of interoceptive signals,

information flows to the brain mainly through the

brainstem region of the nucleus of the solitary tract

(NTS). From the NTS, the visceral inputs reach multi-

ple brain regions, including the periaqueductal gray

[32], parabrachial nucleus [33], the hypothalamus, and

the amygdala [34]. These centers will subsequently

transmit internal sensory information to the insular

cortex via thalamus [35]. The insula is a region situ-

ated deep within the brain that is intricately connected

to the limbic system [36]. This connectivity allows the

insula to integrate external sensory information with

internal physiological signals, forming a comprehensive

representation of our emotional and bodily states

[37,38]. Insula’s role as the main interoceptive hub is

well portrayed by its involvement in various processes,

including perception of pain, temperature, and heart-

beat, as well as other visceral sensations. Functional

neuroimaging studies have consistently shown height-

ened insular activation during tasks involving intero-

ceptive awareness [39,40]. Besides, alterations in

insular activity have been associated with emotional

disorders, such as anxiety and alexithymia, underscor-

ing its relevance in emotional regulation [41–45].
In terms of localizing the specific input structures that

trigger anxiety, this has been more challenging. Never-

theless, it is hypothesized that synchronized neural

activity within the amygdala, bed nucleus of the stria

terminalis (BNST), ventral hippocampus (vHPC), and

medial prefrontal cortex (mPFC) is critical to assess the

presence or absence of potential threats [25,46].

Despite fear and anxiety being innate emotional

states crucial for survival, environmental mal-

adaptations, genetic predisposition, and medical

conditions can occur, leading to the emergence of

pathological fear and anxiety conditions.

Autism spectrum disorder

Autism spectrum disorder is a heterogeneous neurode-

velopmental disorder characterized by a range of symp-

toms that typically manifest in early childhood. The

primary symptoms are impaired social interaction and

restricted repetitive behaviors, including unusual inter-

ests and altered sensorial sensitivities [4]. These core

symptoms are often accompanied by other psychiatric

and medical conditions such as intellectual disability,

epilepsy, anxiety disorders, depression, attention deficit

hyperactivity disorder (ADHD), sleep disorders, and

gastrointestinal problems [47]. It is estimated that ASD

is present in 0.4% of Asian, 1%, of African, 1% of

American, 0.5% of European, and 1.7% of the Austra-

lian population [48] with an average male-to-female

ratio of 4 : 1 [49]. This complex multifactorial disorder

has a strong genetic contribution mainly characterized

by rare inherited and de novo variants. These variants

range from submicroscopic duplications and deletions

(copy-number variants) to small insertions or deletions

(indels) and single nucleotide alterations. In a recent

study, utilizing whole-exome sequencing, over 11 000

individuals diagnosed with ASD were examined leading

to the identification of 102 risk genes that had de novo

or rare variants. A significant proportion of these risk-

associated genes exert roles in regulating neuronal com-

munication and gene expression. Additionally, the

authors observed an enrichment of risk gene expression

at excitatory and inhibitory neuronal lineages of the

human cortex, which aligns with previous observations

of an excitatory–inhibitory imbalance in ASD [3].

Despite its highly heterogeneous background, with both

environmental etiological factors and genetic mutations

that can vary from chromosomal location to levels of

penetrance, multiple efforts have been made to under-

stand the biological basis of ASD. By generating animal

models of risk-associated genes and exposure to envi-

ronmental risk factors, scientists have been able to

unravel some of the complex mechanisms underlying

ASD’s behavioral and neurological alterations.

ASD mouse models carrying common
mutations related with neuronal and
synaptic dysfunction

A variety of genetic animal models have been devel-

oped to study ASD, each designed to mimic specific

genetic mutations or alterations associated with the

disorder. Some of the most commonly used genetic
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models include Fmr1-KO, Pten-KO, Cntnap2-KO,

Shank3, and Nlgn3 mutated and KO mice [50,51].

FMR1

Mutations in the Fragile X Messenger Ribonucleopro-

tein 1 (FMR1) gene are implicated in the fragile X syn-

drome (FXS), being one of the most common and

studied monogenic causes of ASD. FXS is character-

ized by a silencing of the FMR1 gene caused by a

CGG repeat mutation on chromosome Xq27.3 with

subsequent methylation [52]. This genetic alteration

leads to a lack of the Fragile X Mental Retardation 1

protein (FMRP), a protein involved in mRNA traf-

ficking from the nucleus to the dendrites. FMRP binds

to a range of essential synaptic proteins involved in

neurotransmission and structural integrity, such as

postsynaptic density-95 (PSD-95), subunits GluR1 and

GluR2 of the AMPA receptor, and microtubule-

associated protein 1b (MAP1b) [53]. Phenotypically,

Fmr1-KO rodents exhibit behaviors that resemble

human FXS/ASD, such as social and communication

deficits, repetitive behaviors, and cognitive impair-

ments [54,55]. Interestingly, while individuals with

fragile X syndrome exhibit high levels of anxiety, naive

rodent models do not seem to display altered anxiety

[56]. However, upon exposure to fear conditioning par-

adigms, Fmr1-KO rats become more anxious than con-

trols, suggesting impaired adaptation to stressful

situations [11]. Fmr1-KO rodents may hence help to

reveal the neural circuits underlying the challenges

faced by ASD individuals when adapting to stress.

SHANK3

The SH3 and multiple ankyrin repeat domains protein

3 (SHANK3) gene is located in the human chromo-

some 22q13.3 and encodes a scaffold protein known

as SHANK3. This protein is primarily found in the

postsynaptic density of excitatory synapses, where it

interacts with various proteins involved in synaptic

transmission, structural integrity, and signaling path-

ways [57]. SHANK3 mutations are linked to Phelan–
McDermid syndrome, a rare genetic disorder often

characterized by intellectual disabilities and ASD

symptoms. Shank3 mutant mice display some of the

core features of ASD, such as deficits in social interac-

tions, repetitive behaviors, and impaired communica-

tion, being commonly used to study ASD [12,58].

Multiple Shank3 mutant mice have been generated,

including a specialized model carrying a human genetic

mutation, the InsG3680-Shank3 mouse [59]. These ani-

mals exhibit high anxiety levels even under naive

conditions. Similarly, Shank3-KO rats generated

through CRISPR-Cas9 technology, also demonstrate

increased anxiety [60]. Further studies should be per-

formed to explore the underlying mechanisms contrib-

uting to their increased anxiety.

PTEN

Phosphatase and tensin homolog (PTEN ) acts as a

tumor suppressor gene by regulating cellular prolifera-

tion and differentiation through the inhibition of the

PI3K-AKT signaling pathway. While mutations in this

gene are mostly linked with cancer, they have also

been identified in individuals with ASD and macroce-

phaly [61,62]. Similar to other models, Pten-KO

rodents also display deficits in sociability and increased

repetitive behavior. Additionally, these mice present

brain overgrowth [63], a characteristic observed in a

subset of individuals with ASD [42]. Regarding anxi-

ety, certain studies have found no alterations in these

rodents, particularly in females, whereas others have

revealed decreased anxiety levels, specifically in males

[11,64–66]. Thus, while this model may not replicate

the anxiety levels observed in certain individuals with

ASD, it emphasizes the heterogeneity of the disorder.

Given its interesting trait of reduced anxiety, Pten-KO

rodents could also be a useful tool to uncover new

molecular pathways to alleviate anxiety and sex-related

differences in anxiety-related behaviors.

ADNP

Activity-dependent neuroprotective protein (ADNP)

has been frequently found to be mutated in ASD indi-

viduals [67,68]. The ADNP syndrome, also known as

Helsmoortel–Ven Der Aa syndrome, is featured by

intellectual disability and developmental delays, as well

as motor and gastrointestinal problems. Despite being

only discovered in 2014, it is one of the most commonly

identified single-gene causes of ASD [69]. hADNP gene

is located in chromosome 20q12-13.2, a region associ-

ated with tumor growth, and is implicated in cell sur-

vival as well as in mammalian brain formation [70]. In

contrast to the Pten mutant rats, Adnp-haploinsufficient

female mice exhibited altered anxiety-related behaviors,

while male mutants had no alterations, highlighting the

complex interplay of genetics and sex-specific factors in

ASD [71].

CNTNAP2

Contactin-associated protein-like 2 (CNTNAP2) is

located in the human chromosome 7q35 and encodes
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an adhesion molecule named contactin-associated

protein-like-2 (CASPR2), a neuronal transmembrane

protein. CASPR2 is part of the neurexin superfamily

and is involved in neuron–glia interactions and in the

clustering of potassium channels in myelinated axons,

such as Kv1 [72,73]. Several rare and common varia-

tions of this gene have been described in patients with

ASD. Additionally, mutations in this gene have also

been linked to language impairments and intellectual

disabilities [74]. Cntnap2 mutant mice show impair-

ments in ASD core domains: deficits in social interac-

tions with reduced vocal communication and repetitive

and restrictive behaviors [75]. No studies have been

conducted to assess anxiety levels in this mouse model.

NLGN

Neuroligins (NLGN ) are genes that encode synaptic

cell adhesion molecules involved in the formation and

consolidation of synaptic connections. These proteins

are located postsynaptically and, depending on their

subtype, they can be more expressed in either excit-

atory or inhibitory synapses. For instance, NLGN1 is

mainly located in excitatory synapses [76], NLGN2 in

inhibitory synapses [77], NLGN3 in both excitatory

and inhibitory synapses [78], and little is known about

NLGN4 due to its poor evolutionary conservation,

although in humans it has been shown to be present in

excitatory synapses [79]. Among these subtypes, the

ones associated with non-syndromic ASD are the X-

linked Nlgn3 and Nlgn4 genes [80]. Animal models

with loss of function or missense mutation in the

Nlgn3 gene display stereotypical ASD core behaviors

such as deficits in social communication and repetitive

behaviors. No changes in anxiety have been observed

in the Nlgn3-KO [81] and Nlgn3R451c mutant mice [82].

However, due to the heterogeneous localization and

function of NLGN3, it is possible that different muta-

tions may cause distinct phenotypes, as observed in

humans. Together these aspects make Nlgn animal

models a valuable tool for exploring both convergent

and divergent patterns of ASD [83].

Despite the diversity, ASD models share similar syn-

aptic dysfunction phenotypes such as disruption of

excitatory (E) and inhibitory (I) neurotransmission

balance (E/I imbalance). This disruption has been

described in both human and multiple animal models

and is associated with a decrease in the activity of par-

valbumin neurons [84–86]. Such imbalance, if present

in the neural circuits associated with fear and anxiety,

may contribute to the high prevalence of anxiety disor-

ders among individuals with ASD. Across different

mouse models, distinct anxiogenic phenotypes are

evident as well as shared changes in synaptic transmis-

sion, plasticity, and connectivity [50,87]. Identifying

both commonalities and discrepancies among these

mutations could offer insights into novel therapeutic

avenues to treat anxiety symptoms in ASD.

Autism spectrum disorder: neuronal
and synaptic dysfunction in fear- and
anxiety-related circuits

One of the commonly observed comorbidities in indi-

viduals with ASD is anxiety. Around 40–50% of chil-

dren with ASD experience at least one anxiety

disorder [5,6], a notably higher prevalence compared

to the general pediatric population’s range of 5–6.5%
[88,89]. Of all types of anxiety disorders, development

of unusual phobias is one of the most common. These

phobias can encompass intense fear of everyday

objects, sounds, textures, or even specific patterns,

which can lead to significant distress and challenges in

daily life [90]. Why are ASD children so prone to

anxiety/phobias? What neurobiological alterations are

changing fear perception? Altered sensorial perception?

The limbic processing of threats?

Sensorial triggering

Proper sensorial perception is essential for accurately

assessing threats. Inadequate perception might lead

to misinterpretation of harmless stimuli, leading to

unnecessary fear responses or heightened anxiety. One

of the main core symptoms of ASD is atypical sensorial

perception. In fact, even though ASD individuals pre-

sent sharp vision with good contrast discrimination, in

terms of visual perception these individuals exhibit a

strong bias over detail in static stimuli [91] but struggle

with global-motion perception [92]. Neuroimaging

studies using functional magnetic resonance imaging

(fMRI) demonstrate that ASD individuals present

atypical, enhanced responses in the primary visual cor-

tex and primary motion area when exposed to high

motion pictures [93,94]. Interestingly, this altered activ-

ity seems to depend on how long the participants are

allowed to see the motion picture: longer exposure

times lead to more activity in the visual and motion

cortex, but shorter exposure times result in reduced

activity [92]. Further investigation regarding this modi-

fied activity pattern in the visual and motion cortex

during motion signal processing could potentially eluci-

date the increased sensitivity/aversion that individuals

with ASD commonly demonstrate toward moving

objects, including mechanical toys and running water

[95]. Of note, Fmr1-KO and Shank3 mutant rodents
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show changes in how the visual cortex processes sen-

sory information [96–98]. A recent study demonstrates

that, after pre-exposure to a visual perceptual experi-

ence, Fmr1-KO mice have a reduced magnitude and

duration of multiple oscillations of the visual cortex

compared to WT. The authors further demonstrate that

functional connectivity between layers differs between

WT and Fmr1-KO post-perceptual experience [98].

Likewise, another study demonstrates that Fmr1-KO

exhibits delayed learning on a visual discrimination

task due to reduced activity of parvalbumin neurons in

the visual cortex, and restoration of their activity

potentiates learning to the visual task [97].

Similar to the visual system, individuals with ASD

also seem to display disruptions in auditory proces-

sing, without having hearing deficits [99]. Sound is a

fundamental sensory cue to provide critical informa-

tion regarding potential threats. For instance, a sudden

loud noise, like a gunshot, can trigger an immediate

emotional fear state characterized by a heightened

alertness and rapid physiological changes to prepare

the body to freeze, flight, or fight, depending on

the threat imminence. Auditory cues also contribute to

the perception of social cues, such as tone of voice and

speech patterns, which are essential for inferring emo-

tional states and intentions of others. Overall, auditory

information pairs with visual and tactile cues to create

a comprehensive perception of the environment, facili-

tating adaptive responses to potential threats.

Around 90% of individuals with ASD are diagnosed

with hypersensitivity to auditory stimuli and, in some

cases, hyposensitivity. In individuals with hypersensi-

tivity, sounds are perceived as overwhelmingly intense,

causing distress or discomfort [100,101]. But some

ASD individuals seem to appreciate certain sounds

and enjoy making noise, being characterized as hypo-

sensitive [102,103]. However, it is important to recog-

nize that the dichotomy of hypersensitivity and

hyposensitivity may not fully encapsulate the complex-

ity of sensory processing variations seen in ASD. Sen-

sory processing differences can often exhibit a dynamic

interplay, where an individual might be hypersensitive

to certain stimuli while being hyposensitive to others.

All the ASD animal models described in the previ-

ous section seem to present auditory alterations. Such

alterations have been attributed to E/I imbalance,

alterations in synaptic transmission, and changes in

neuronal morphology in multiple auditory-processing

brain regions such as the inferior colliculus, thalamus,

and auditory cortex ([104] and detailed review in [51]).

Interestingly, Fmr1-KO mice display a decreased fear

response in tone-recall but not context-recall, which

suggests a dysregulation in associating the tone to the

threat [105]. In contrast, Nlgn3-KO demonstrates defi-

cits in both contextual and tone recall [106], while

Shank3-KO mice show increased fear response to the

tone recall [107]. Studying the mechanisms that under-

lie these divergences in auditory processing during fear

responses could elucidate the distinct circuits that

encode pure auditory versus auditory-contextual versus

pure-contextual perception and offer insights into

the heterogeneity of sensorial responses observed in

individuals with ASD. Of note, all these studies used

fear paradigms that elicit passive defensive behavior

responses. Considering that individuals with ASD

often exhibit distress responses marked by aggression

in the presence of auditory anxiety-inducing stimuli, it

would be interesting to study how these diverse animal

models elicit defensive attacks toward an anxiety/fear

stimulus. Accordingly, it would be interesting to test

whether the observed fear response to a tone recall

would change toward more aggressive behaviors in the

presence of another mouse.

Processing of threat

One of the first brain regions to be associated with

threat processing was the amygdala. Even though it is

currently known that threat processing encompasses a

multitude of brain regions, the amygdala is still con-

sidered one of the main hubs for fear and anxiety pro-

cessing. This region is part of the limbic system and

has a fundamental role in deciphering emotional

valence of sensory stimuli, quickly assessing whether a

stimulus poses a danger threat [108]. Amygdala dys-

function can lead to improper threat assessment, con-

tributing to anxiety and fear-related disorders.

Growing evidence demonstrates that individuals with

ASD have structural and functional differences in the

amygdala. Structural studies have reported faster

growth [109] and enlargement of the amygdala in ASD

children [110,111], whereas adolescents and adults pre-

sent either similar or reduced volume compared to

neurotypical controls [112,113]. In accordance, infants

with ASD seem to present a larger number of neurons

in the amygdala, while adults present a decreased

number [114,115]. Functionally, neuroimaging studies

using fMRI have revealed differences in amygdala acti-

vation in response to emotional stimuli, where individ-

uals with ASD demonstrated atypical increased

activation when processing faces [116,117] or fearful

expressions [118]. Together with the structural findings,

it is hypothesized that ASD alterations in the amyg-

dala could contribute to difficulties in recognizing and

responding to emotional cues in social interactions.

Such difficulties, together with sensory alterations,
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could potentially serve as a significant precursor to the

emergence of social anxiety, namely, the development

of phobia toward large crowds.

Consistent with observations in human data, ASD

animal models also exhibit age-dependent differences

in amygdala activity. Young Fmr1-KO rodents exhibit

hyperexcitability in the principal neurons of the lateral

[119] and basolateral amygdala [120], attributed to a

reduction in inhibitory transmission [121]. Conversely,

adult Fmr1-KO rodents display changes in lateral

amygdala excitatory activity, characterized by reduced

excitatory synaptic transmission and impaired long-

term potentiation, mechanisms responsible for memory

formation. These alterations may contribute to the

observed deficits in tone recall, as reflected by decreased

freezing responses. Furthermore, the activation of the pre-

synaptic metabotropic glutamatergic receptor 5 (mGluR5)

can reverse synaptic transmission and plasticity deficits

and normalized fear response in a rat model of FXS

[122]. These amygdalar findings seem to contrast with

conventional E/I imbalance described in other brain

regions, where enhancing inhibitory interneuron activity

typically leads to beneficial effects.

Visceral information

A fundamental aspect of fear and anxiety responses

lies in the integration of internal physiological signals,

a process named interoception that collectively con-

tributes to our ability to assess the level of threat and

adapt our reactions accordingly. Visceral signals origi-

nating from internal organs, such as heart rate, breath-

ing rate, and gastrointestinal sensations, provide

essential information about our physiological state. In

the context of fear and anxiety, interoception enables

us to detect physiological changes, such as increase or

decrease of heart rate. Impaired interoception can

lead to misinterpretation of bodily signals, resulting

in exaggerated or inappropriate fear and anxiety

responses. From the early days, individuals with ASD

have been described as having interoception difficul-

ties, often linked to gastrointestinal sensations like

hunger [95]. However, it was only recently that cardiac

interoception in ASD patients has generated significant

attention, primarily due to its relevance in fear and

anxiety-related disorders. Individuals with panic

and generalized anxiety disorder consistently show

greater heartbeat perception compared to controls in a

heartbeat detection task. This increased accuracy in

detecting heartbeats has been recognized as enhanced

interoceptive accuracy. Accordingly, anxious individ-

uals also present enhanced interoceptive sensibility,

developing an increased cardiac interoceptive awareness

[123,124]. These findings suggest that individuals with

anxiety disorders possess the ability to detect sub-

threshold interoceptive signals, that are then amplified

and associated with potential threats, giving rise to anx-

ious thoughts [40,125,126]. Regarding individuals with

ASD, divergent findings have been reported. While cer-

tain studies indicate that cardiac interoception remains

intact [127], others propose decreased cardiac interocep-

tive accuracy in heartbeat detection tests, with higher

interoceptive sensibility based on self-report question-

naires [128–130]. These discrepancies might be attrib-

uted to the considerable diversity within the spectrum

[131], as well as age-related factors, namely, impaired

interoceptive perception in children [132]. Nonetheless,

these observations suggest a plausible link between low

interoceptive accuracy and attention deficit, alongside

alexithymia, while enhanced interoceptive sensibility

could be related to anxiety symptoms.

In recent years, the insular cortex has emerged as a

central player in the interoceptive aspects of fear and

anxiety. In individuals with ASD, abnormal structural

and functional organization has been described in the

insular cortex, especially in the anterior part which is

the sub-area related with emotional processing

[133,134]. Neuroimaging studies demonstrated insular

hypoactivity during tasks requiring the interpretation

of emotional facial expressions [135,136]. This decrease

in activity has been linked to the difficulties experi-

enced by individuals with ASD in terms of social pro-

cessing and their capacity to engage effectively in

interpersonal interactions. It would be pertinent to

conduct a more in-depth assessment of insular activity

during interoceptive accuracy tasks versus interocep-

tive sensibility questionnaires. Such analysis could

potentially elucidate whether distinct patterns of

activation are present and whether these patterns con-

tribute to the different functional organization within

sub-areas of the insular cortex.

Only a limited number of studies have explored

potential alterations in the insular cortex in ASD

animal models. Changes in synaptic transmission

linked to kainate receptors within the insula have

been described in Fmr1-KO mice [137]. Additionally,

findings from Shank3 mutant mice indicate disrup-

tions in the excitation–inhibition balance of the

insula, which appear to be linked with impaired sen-

sory integration of auditory and tactile stimuli [138].

Further investigations focused on assessing disrup-

tions within the insular cortex associated with car-

diac interoception and their potential implications

for anxiety disorders could shed light on the mecha-

nisms contributing to heightened anxiety among indi-

viduals with ASD.
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Conclusions and future perspectives

Autism spectrum disorder has a complex landscape

characterized by impairments in communication, social

interaction, and sensory perception, together with

heightened susceptibility to anxiety disorders. The

prevalence of anxiety disorders in ASD individuals is

notably higher than in the general pediatric popula-

tion, with unusual phobias being a prevalent manifes-

tation. Disturbances in sensory processing, particularly

in the visual and auditory domains, coupled with alter-

ations in the amygdala, may underlie difficulties in

interpreting emotional cues. Additionally, emerging

research highlights the crucial role of interoception in

modulating fear and anxiety responses, adding another

layer of complexity. Notably, children with ASD

exhibit differences in cardiac interoception perception

and insular activity, which could intersect with anxiety

symptoms (Fig. 1).

Animal models provide valuable tools for dissecting

biological mechanisms, bridging the gap between

human observations and underlying neural circuits.

Yet, many questions still persist in ASD research.

How does E/I imbalance affect sensory perception and

threat assessment in ASD? How does the amygdala

integrate such altered sensory signals? The intricate

relationship between amygdala structural changes and

their repercussions on fear and anxiety in ASD

requires further exploration. Moreover, to the best of

our knowledge, little animal research has been per-

formed addressing the implication of cardiac intero-

ception in ASD. Targeting these pathways could

potentially ameliorate some of the behavioral and cog-

nitive deficits associated with the disorder. Recognizing

and addressing the unique requirements of children on

the autism spectrum is crucial to promote favorable

development of these individuals. As such, research

advances that can provide insights into the intricate

physiological mechanisms contributing to ASD may

pave the way for more effective interventions and

improved outcomes for individuals living with ASD.

Fig. 1. Schematic depicting the main sensorial, emotional, and visceral findings from ASD patients and genetic rodent models of ASD.
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